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Abstract. Recently Polchinski and Strassler reproduced the high energy QCD scaling at fixed angles from a
gauge string duality inspired by the AdS/CFT correspondence. In their approach a confining gauge theory
is taken as approximately dual to an AdS space with an IR cut-off. Considering such an approximation (AdS
slice) we found a one to one holographic mapping between bulk and boundary scalar fields. Associating
the bulk fields with dilatons and the boundary fields with glueballs of the confining gauge theory we also
found the same high energy QCD scaling. Here, using this holographic mapping, we give a simple estimate
for the mass ratios of the glueballs assuming the AdS slice approximation to be valid at low energies. We
also compare these results to those coming from supergravity and lattice QCD.

Recently Polchinski and Strassler reproduced important
observed properties of QCD from string theory in AdS
space [1,2]. In these articles they used a model for the
dual of a confining gauge theory which is approximately
an AdS slice with an infrared cut-off. Using this model
they were able [1] to obtain the high energy scaling of the
QCD scattering amplitudes for fixed angles [3,4] as well
as the Regge regime. Further they proposed [2] a way of
analyzing the deep inelastic scattering and Bjorken scaling
in terms of string theory. Using the same kind of AdS slice
we proposed [5] a one to one holographic mapping between
low energy string dilaton states in AdS bulk and massive
composite operators on its boundary. From this mapping
we also obtained a scaling for high energy amplitudes at
fixed angles similar to that of QCD and of Polchinski and
Strassler (see also [6–8]).

The gauge/string duality considered in [1,2] was in-
spired by the AdS/CFT correspondence proposed recently
by Maldacena [9] where SU(N) conformal gauge theory
with N = 4 supersymmetry is dual to string theory in
AdS space (times a compact manifold). The prescriptions
for realizing this correspondence obtaining boundary cor-
relation functions in terms of bulk fields were proposed in
[10,11] (see also [12] for a review). The AdS/CFT corre-
spondence can be understood as a realization of the holo-
graphic principle [13–15].1 This principle asserts that the
degrees of freedom of a theory with gravity defined in a
given space can be mapped on the corresponding bound-
ary.

a e-mail: boschi@if.ufrj.br
b e-mail: braga@if.ufrj.br
1 For a covariant generalization of the holographic principle,

see [16].

In the AdS/CFT correspondence the higher the energy
of a given boundary process, the closer to the horizon is
the bulk dual. Restricting boundary process to energies
higher than some IR cut-off would then correspond to re-
stricting the bulk to some region in the neighborhood of
the horizon. That is a motivation for taking an AdS slice
as an approximation for the space dual to a boundary
confining gauge theory. Such a gauge theory with an in-
frared cut-off can be related to N = 1∗ supersymmetric
Yang–Mills theory [1,2] (see also [17]). This model leads
to QCD-like behavior at high energies. An AdS slice was
used before in [18,19] to propose a solution to the hier-
archy problem. An approach based on string theory to
N = 1 super Yang–Mills has been proposed in [20].

An approach to QCD from the AdS/CFT correspon-
dence was proposed by Witten [21]. It consists of break-
ing supersymmetry with different compactifications of
AdS space. This involves at least one circle S1 where
anti-periodic boundary conditions are assumed for the
fermionic fields (the bosonic ones are periodic). These
compactifications leads to AdS–Schwarzschild black hole
metrics that can be related to QCD3 or QCD4 [21]. This
approach can be used to estimate glueball masses from su-
pergravity models relating glueballs with the bulk dilaton
modes in different dimensions [22]. This idea was imple-
mented in [23] for QCD3 and QCD4 where the supergrav-
ity equations with the black hole metric do not allow one
to obtain analytic solutions, but the eigenvalues related to
the glueball masses can be found using a WKB method
(see also [24–29]).

Here we use the mapping proposed in [5] between bulk
dilatons and massive boundary operators defined in the
AdS slice to estimate in a simple way the ratio of the
boundary masses. This slice has an infrared cut-off that
Polchinski and Strassler identified with the mass of the
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lightest glueball. Using this identification and assuming
that the approximated duality is still valid for low energies
we identify our boundary operators with glueballs of the
confining gauge theory.

The general structure of the holographic mapping was
taken from [30] where we introduced a mapping between
scalar fields in AdS bulk and boundary. Using this map-
ping and the low energy string theory approximation we
found the QCD like scaling for high energy amplitudes [5].

We consider an AdS5 × S5 space with radius R de-
scribed by Poincaré coordinates

ds2 =
R2

z2

(
dz2 + (dx)2 − dt2

)
+ R2dΩ2

5 , (1)

where Ω5 corresponds to the five dimensional sphere S5.
According to the AdS/CFT correspondence, glueballs are
related to closed strings. At energies much lower than the
string scale 1/

√
α′ string theory can be approximated by

supergravity, where dilatons and gravitons play an im-
portant role [31]. In particular we will be interested in
dilatons which are the string duals to scalar glueballs. We
consider the dilaton to be in the s-wave state, so we will
not take into account variations with respect to S5 coor-
dinates. The free dilaton field in AdS5 with size zmax can
be cast into the form [32]

Φ(z,x, t) =
∞∑

p=1

∫
d3k

(2π)3
z2 J2(upz)

zmax wp(k) J3(upzmax)

×
{
ap(k) e−iwp(k)t+ik·x + h.c.

}
, (2)

with 0 ≤ z ≤ zmax and wp(k) =
√

u2
p + k2 , h.c. means

hermitean conjugate and the up are defined by

upzmax = χ2 , p (3)

such that the Bessel function satisfies J2(χ2 , p) = 0.
The operators ap , a†

p satisfy the commutation rela-
tions[

ap(k) , a†
p′(k′)

]
= 2 (2π)3wp(k)δp p′ δ3(k − k′) . (4)

On the boundary (z = 0) of the AdS slice we consider
massive composite operators Θi(x, t) representing glue-
balls with masses µi. The algebra of the corresponding
creation–annihilation operators can be written as[

bi(K) , b†
i (K

′)
]

= 2(2π)3 wi(K) δ3(K − K′) , (5)

where wi(K) =
√

K2 + µ2
i .

In the previous work [5] we considered a single glue-
ball operator Θ(x, t). We have seen, following the general
ideas of [30], that the discretization introduced by consid-
ering a slice of AdS makes it possible to establish a one
to one mapping between bulk (k, up) and boundary (K)
momenta. We assume a trivial mapping between the an-
gular parts of k and K. Then in order to find a relation

between k = |k| , up and K = |K| we introduce a sequence
of energy scales Ej . Defining Kj to be a momentum in the
interval Ej−1 ≤ K ≤ Ej we map the momentum space
operator Θ̃(Kj) in a one to one relation with the dilaton
operator of momentum k, up:

Θ̃(Kj) ↔ Φ̃(k, up) .

This way all the dilaton states are mapped into a single
field on the boundary. Note that each interval Ej−1 ≤ K ≤
Ej is mapped into the entire range of k corresponding to a
fixed up. For each positive integer j we choose a different
p.

As we are looking at physical processes in the bound-
ary theory which take place in a given energy range we
can take E1 large enough so that the first energy interval
0 ≤ K ≤ E1 ≡ E contains all the relevant physics. Then
only one interval for K is necessary. In this case the above
mapping reduces to

Θ̃(K1) ↔ Φ̃(k, up) (p fixed).

For simplicity we took p = 1 in the previous work.
Here we want to describe physical processes involving

a set of glueball operators Θi(x, t) (i = 1, 2, ... ) using
the same kind of mapping. If we again introduce momen-
tum operators Θ̃i(Kj) with momentum Kj in the interval
Ej−1 ≤ K ≤ Ej they would not be mapped in a one to
one relation with bulk operators Φ̃(k, up) unless j is lim-
ited, since i and p are unlimited. Then such a mapping is
possible if we introduce a restriction on the index j. The
simplest choice is to take just one value for j. This is ob-
tained taking E1 ≡ E large enough, which means that now
j = 1 . This recovers the previous solution and in this case
the one to one mapping reads

Θ̃i(K) ↔ Φ̃(k, ui),

where we have dropped the index of K1 since it is the only
relevant boundary momentum.

This mapping can be written explicitly in terms of
bulk and boundary creation–annihilation operators. We
will impose the same relation proposed in [5]:

k ai(k) = K bi(K) ,

k a†
i (k) = K b†

i (K) . (6)

For a general relation between bulk and boundary
creation–annihilation operators in AdSn+1 see [30].

Requiring that the equations (6) preserve the canonical
commutation relations (4) and (5) one finds that the mod-
uli of the momenta are related, for each bulk and boundary
state, by

k =
ui

2

[
E +

√E2 + µ2
i

K +
√

K2 + µ2
i

− K +
√

K2 + µ2
i

E +
√E2 + µ2

i

]
, (7)

where 0 ≤ K ≤ E . Note that this mapping contains as
a particular case the previous one [5] which can be reob-
tained here if we consider the masses µi to be completely
degenerated.
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Now we associate the size zmax of the AdS space with
the mass of the lightest glueball which we choose to be µ1:

zmax =
χ2 , 1

µ1
, (8)

so that from equation (3) we have

ui =
χ2 , i

χ2 , 1
µ1. (9)

An approximate expression for the mapping (7) can
be obtained choosing appropriate energy scales. We take
E to be the string scale 1/

√
α′ assuming that K � E . On

the other side we restrict the momenta K associated with
glueballs to be much larger than their masses µi. Then we
have

µi � K � 1√
α′ . (10)

In this regime the mapping (7) reduces to

k ≈ ui

2
√

α′K
. (11)

This approximate mapping gives a high energy scaling
similar to QCD [5]. Using the conditions (10) together
with the above mapping we see that the bulk momenta
satisfy

ui � k �
(

ui

µi

)
1√
α′ . (12)

Note that the supergravity approximation holds for
k � 1/

√
α′ . So in order to keep this approximation valid

for all glueball operators Θi the factor ui/µi should be
nearly constant. We then impose that

ui

µi
= constant . (13)

So the glueball masses are related to the zeros of the
Bessel functions by

µi

µ1
=

χ2 , i

χ2 , 1
. (14)

Using the values of these zeros one finds the ratio of
the glueball masses for the state 0++ and its excitations.
We are using the conventional notation for these states
with spin zero and positive parity and charge conjuga-
tion. In order to compare our results from bulk/boundary
holographic mapping with those coming from lattice we
adopt the mass of the first state as an input. Our re-
sults are in good agreement with lattice [33,34] and AdS–
Schwarzschild black hole supergravity calculations as seen
in Table 1. It is interesting to mention that an approach to
estimate glueball masses in Yang–Mills∗ from a deformed
AdS space was discussed very recently in [35].

We can generalize the above results to AdSn+1. In this
case massless bulk fields are expanded in terms of the
Bessel functions Jn/2 and the mass ratios for the n di-
mensional “glueballs” are given in terms of their zeros. In

Table 1. Masses of the first few 0++ glueballs for QCD4 with
SU(N) and N = 3, in GeV, from lattice [33,34], from AdS–
Schwarzschild black hole supergravity [23] and our results from
bulk/boundary holographic mapping, (14)

QCD4 state Lattice, N = 3 Supergravity Bulk/boundary
0++ 1.61 ± 0.15 1.61 (input) 1.61 (input)
0++∗ 2.8 2.38 2.64
0++∗∗ – 3.11 3.64
0++∗∗∗ – 3.82 4.64
0++∗∗∗∗ – 4.52 5.63
0++∗∗∗∗∗ – 5.21 6.62

particular for AdS4, where one expects to recover results
from QCD3, we find

µi

µ1
=

χ3/2 , i

χ3/2 , 1
. (15)

Using this relation we obtain the ratio of masses presented
in Table 2 together with lattice and AdS–Schwarzschild
black hole supergravity calculations. The agreement here
is also good.

It is interesting to see if the AdS slice considered here
can be related to the AdS–Schwarzschild black hole metric
proposed by Witten [21]. Witten’s proposal for the case
of QCD3 corresponds to the ten dimensional metric [23]

ds2 = R2
(

ρ2 − b4

ρ2

)−1

dρ2 + R2
(

ρ2 − b4

ρ2

)
dτ2

+ R2ρ2(dx)2 + R2dΩ2
5 , (16)

where ρ ≥ b , R2 = l2s
√

4πgsN , and b is inversely pro-
portional to the compactification radius of S1 where the τ
variable is defined.

If we qualitatively neglect the τ contribution to the
metric in the limit of very little compactification radius
and then take the limit ρ � b this metric is approximated
by

ds2 =
R2

ρ2 dρ2 + R2ρ2dτ2 + R2ρ2(dx)2 + R2dΩ2
5 . (17)

That is an AdS4 × S5 space that takes a form similar to
(1) if we change the axial coordinate to z = 1/ρ. In Wit-
ten’s framework one must impose regularity conditions at
ρ = b because of the presence of the horizon at this posi-
tion. In our approximation in order to retain this physical
condition we impose boundary conditions there and asso-
ciate it to the cut of our slice (b = 1/zmax). This AdS4
slice is the one used to estimate the glueball mass ratios
related to the three dimensional gauge theory (15). So we
can think of our AdS4 slice as a naive approximation to
Witten’s proposal.

An analogous situation could also be considered for
Witten’s proposal to QCD4. In that case the situation is
more involved because of the form of the metric coming
from the compactification of AdS7 × S4.
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Table 2. 0++ glueball masses for QCD3 with SU(N) from lattice [33,34](in units of
string tension), from AdS–Schwarzschild black hole supergravity [23] and our results
from bulk/boundary holographic mapping, (15)

QCD3 state Lattice, N = 3 Lattice, N → ∞ Supergravity Bulk/boundary
0++ 4.329 ± 0.041 4.065 ± 0.055 4.07 (input) 4.07 (input)
0++∗ 6.52 ± 0.09 6.18 ± 0.13 7.02 7.00
0++∗∗ 8.23 ± 0.17 7.99 ± 0.22 9.92 9.88
0++∗∗∗ – – 12.80 12.74
0++∗∗∗∗ – – 15.67 15.60
0++∗∗∗∗∗ – – 18.54 18.45

In conclusion we have seen that the bulk/boundary
holographic mapping which reproduces the high energy
scaling of QCD like theories can also be applied to es-
timate glueball mass ratios. We hope that this mapping
can be used to describe other particle states that may be
related to some properties of QCD.

It is important to remark that one can obtain a sim-
ilar result for the ratio of the glueball masses consider-
ing other mappings between bulk and boundary creation–
annihilation operators instead of (6). For example one
could take ai = bi . This would contain the solution
k = K implying that the masses of the glueballs are iden-
tically equal to the values of the axial bulk momenta ui.
However such a trivial mapping does not seem to repro-
duce the high energy QCD scaling.

Let us mention that we used a solution for the dilaton
field corresponding to Dirichlet boundary conditions at
z = 0 and z = zmax. This allows for the existence of Bessel
functions but not the divergent Neumann solutions. Other
boundary conditions can also be considered in the same
context.

We have also obtained elsewhere [36] these mass ra-
tios for scalar glueballs starting with the same AdS slice
as discussed here without using the holographic mapping
of [5] but assuming the stronger condition of relating di-
rectly the dilaton modes with the glueball masses. The
consistency between these results seems to indicate that
the holographic mapping found before may indeed be valid
within the approximations and the energy region consid-
ered.

What is surprising in this bulk/boundary holographic
mapping is that it seems to describe features of both high
and low energy regimes of the boundary theory, since it
gives information about the high energy scaling and mass
spectrum.
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